Latvian Council of Science Fundamental and Applied research project/
Latvijas Zinātnes padomes Fundamentālo un lietišķo pētījumu projekts
Advancement of methods for measuring the motility of microswimmers (A4Mswim)/
Mikropeldētāju kustīguma mērīšanas metožu attīstīšana

Project impelmenter/Projekta īstenotājs: University of Latvia, Faculty of Physics, Mathematics and Optometry, MMML lab/Latvijas Universitāte, Fizikas, matemātikas un optometrijas fakultāte, Magnētisku mīkstu materiālu laboratorija (MMML)

Project leader/Projekta vadītājs: Dr. Guntars Kitenbergs

Project number/Projekta numurs: lzp-2021/1-0470

Project duration/Projekta īstenošanas termiņš: 2022.01.01-2024.12.31

Project funding/Projekta kopējais finansējums: 299 999.70 EUR (state budget/valsts budžeta finansējums)

Project team/Zinātniskā grupa: Dr. Guntars Kitenbergs, Prof. Andrejs Cēbers, Dr. Ivars Driķis, Post-doc Andris Pāvils Stikuts, (to be) Post-doc Mihails Birjukovs, PhD student/doktorante Māra Šmite + other students/citi studenti

Project goal/Projekta mērķis: to advance methods of microswimmer motility characterization to routine measurements with sufficient temporal and spatial resolution/ pilnveidot mikropeldētāju kustīguma mērīšanas metodes līdz rutīnas mērījumu līmenim ar pietiekošu laika un telpisko izšķirtspēju

Project structure/Projekta struktūra:
WP1 Experimental microswimmer motility measurements
WP2 Interpretation of experimental results
WP3 Management and dissemination

Project summary: It is fundamentally interesting to understand the behavior of swimming objects at microscale, but recently multiple interesting demonstrations of microswimmer applications have been proposed, particularly in the field of medicine. An important characteristic of microswimmers is their motility, which is often non-intuitive in the low Reynolds number regime and is equally interesting for both natural and artificial swimmers. Measurements of the swimmer motion and the flow field that it creates around are necessary, but often very difficult. Here we propose to advance the measurement methods. We will challenge a conventional microPIV (Particle Image Velocimetry) setup with a fully controllable and modifiable ferromagnetic filament-based swimmer and look for improvements. The improved setup will be applied to other microswimmers, including magnetotactic bacteria. We plan to obtain first time measurements of multiple swimmer motility with high spatial and temporal resolution, which will be compared to theoretical or biological predictions. Our conclusions will help other physicists, biologists and engineers in their work to investigate the huge variety of swimmers or develop and improve artificial swimmers for specific applications.

Projekta kopsavilkums: Ir interesanti saprast mikromērogā peldošu objektu uzvedību pat tikai no fundamentālā skatu punkta, tomēr pēdējā laikā ir demonstrēti arī vairāki mikropeldētāju pielietojumi, jo īpaši medicīnas jomā. Svarīga mikropeldētaju īpašība ir to kustīgums, kas vidē ar mazu Reinoldsa skaitli bieži vien ir neintuitīva un vienlīdz interesanta gan dabīgiem, gan mākslīgiem peldētājiem. Peldētāja kustības un tā radītā plūsmas lauka mērījumi ir nepieciešami, bet bieži vien ļoti sarežģīti. Šajā projektā mēs piedāvājam attīstīt mērīšanas metodes. Mēs pārbaudīsim komerciālas mikroPIV (Daļiņu ātrumu lauku mērīšanas) iekārtas pielietojamības robežas, izmantojot pilnībā kontrolējamu un regulējamu peldētāju no feromagnētiskas stīgas, un meklēsim uzlabojumus. Uzlabotā iekārta tiks izmantota citu mikropeldētāju, tai skaitā magnetotaktisko baktēriju izpētei. Mēs plānojam iegūt pirmreizējus rezultātus par vairāku peldētāju kustīgumu ar augstu telpisko un laika izšķirtspēju, kas tiks salīdzināti ar teorētiskiem vai bioloģiskiem modeļiem vai hipotēzēm. Mūsu secinājumi palīdzēs citiem fiziķiem, biologiem un inženieriem savā darbā izpētīt plašo peldētāju daudzveidību vai attīstīt un pilnveidot mākslīgi veidotus peldētājus konkrētiem pielietojumiem.

Keywords: microswimmer, low Reynolds number, microfluidics, microPIV, magnetic filaments, magnetotactic bacteria, magnetic field

Atslēgvārdi: mikropeldētājs, mazs Reinoldsa skaitlis, mikrofluidika, mikroPIV, magnētiskas stīgas, magnetotaktiskas baktērijas, magnētiskais lauks

Project results

Research

1) Conference abstracts

2) Articles in Journals

3) Project proposals

University

1) Progress seminars

Information about the seminar: https://conferences.lu.lv/event/228/

Abstract book (including 3 contributions from A4Mswim project): https://dspace.lu.lv/dspace/handle/7/61773

2) Thesis

work in progress

Outreach

1) Researchers' Night events:

30.09.2022. at the House of Science, University of Latvia, as the part of the Faculty of Physics, Mathematics and Optometry activities. See here for the news story and pictures 

2) Social media stories

3) Radio &  Video

News story "Latvijas dabā atrod pirmo magnetotaktisko baktēriju (The first magnetotactic bacteria is found in the Latvian nature)" in the evening news program "Panorāma" on the Latvijan Television channel LTV1, 15.10.2022. link 

Short story "Latvijā ir noķerta pirmā dabā dzīvojošā magnetotaktiskā baktērija (First magnetotactic bacteria living in the Latvian nature has been caught)" in the popular science radio program Zināmais Nezināmajā (Known in the Unknown) on the Latvian Radio channel LR1, 17.10.2022. link

Popular science conversiation on using magnetism in applications, as well as new fundamental research on this topic in Latvia and abroad, in the popular science radio program Zināmais Nezināmajā (Known in the Unknown) on the Latvian Radio channel LR1, 8.06.2022. link

4) Other

Story in Delfi Campus link and University of Latvia portal link

Story in weekly journal Mājas viesis 08.12.2022. p.36-38 (later published also in la.lv - link)

4) Other

Story in Delfi Campus link and University of Latvia portal link

Story in weekly journal Mājas viesis 08.12.2022. p.36-38 (later published also in la.lv - link)

A presentation at the Jauno Fiziķu Skola (Young Physicist School - see jfs.lu.lv) about hydrodynamics at small scale, including new research. 10.12.2022.